Dynamic Microtubules Catalyze Formation of Navigator-TRIO Complexes to Regulate Neurite Extension

نویسندگان

  • Jeffrey van Haren
  • Jérôme Boudeau
  • Susanne Schmidt
  • Sreya Basu
  • Zhe Liu
  • Dave Lammers
  • Jeroen Demmers
  • Jabran Benhari
  • Frank Grosveld
  • Anne Debant
  • Niels Galjart
چکیده

Neurite extension is regulated by multiple signaling cascades that ultimately converge on the actin and microtubule networks [1]. Rho GTPases, molecular switches that oscillate between an inactive, GDP-bound state and an active, GTP-bound state, play a pivotal role in controlling actin cytoskeleton dynamics in the growth cone, whereas the dynamic behavior and interactions of microtubules are largely regulated by proteins called plus-end-tracking proteins (+TIPs), which associate with the ends of growing microtubules. Here, we show that the +TIP Navigator 1 (NAV1) is important for neurite outgrowth and interacts and colocalizes with TRIO, a Rho guanine nucleotide exchange factor that enables neurite outgrowth by activating the Rho GTPases Rac1 and RhoG. We find that binding of NAV1 enhances the affinity of TRIO for Rac1 and RhoG, and that NAV1 regulates TRIO-mediated Rac1 activation and neurite outgrowth. TRIO is also a +TIP, as it interacts with the core +TIP EB1 and tracks microtubule plus ends via EB1 and NAV1. Strikingly, the EB1-mediated recruitment of TRIO to microtubule ends is required for proper neurite outgrowth, and stabilization of the microtubule network by paclitaxel affects both the TRIO-NAV1 interaction and the accumulation of these proteins in neurite extensions. We propose that EB1-labeled ends of dynamic microtubules facilitate the formation and localization of functional NAV1-TRIO complexes, which in turn regulate neurite outgrowth by selectively activating Rac1. Our data reveal a novel link between dynamic microtubules, actin cytoskeleton remodeling, and neurite extension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kidins220/ARMS regulates Rac1-dependent neurite outgrowth by direct interaction with the RhoGEF Trio.

Neurite extension depends on extracellular signals that lead to changes in gene expression and rearrangement of the actin cytoskeleton. A factor that might orchestrate these signalling pathways with cytoskeletal elements is the integral membrane protein Kidins220/ARMS, a downstream target of neurotrophins. Here, we identified Trio, a RhoGEF for Rac1, RhoG and RhoA, which is involved in neurite ...

متن کامل

The Human Rho-GEF Trio and Its Target GTPase RhoG Are Involved in the NGF Pathway, Leading to Neurite Outgrowth

Rho-GTPases control a wide range of physiological processes by regulating actin cytoskeleton dynamics. Numerous studies on neuronal cell lines have established that Rac, Cdc42, and RhoG activate neurite extension, while RhoA mediates neurite retraction. Guanine nucleotide exchange factors (GEFs) activate Rho-GTPases by accelerating GDP/GTP exchange. Trio displays two Rho-GEF domains, GEFD1, act...

متن کامل

GEFs and Rac GTPases control directional specificity of neurite extension along the anterior-posterior axis.

Although previous studies have identified many extracellular guidance molecules and intracellular signaling proteins that regulate axonal outgrowth and extension, most were conducted in the context of unidirectional neurite growth, in which the guidance cues either attract or repel growth cones. Very few studies addressed how intracellular signaling molecules differentially specify bidirectiona...

متن کامل

Wnt-3a and Dickkopf-1 stimulate neurite outgrowth in Ewing tumor cells via a Frizzled3- and c-Jun N-terminal kinase-dependent mechanism.

Recombinant Wnt-3a stimulated the rapid formation of elongated processes in Ewing sarcoma family tumor (ESFT) cells that were identified as neurites. The processes stained positively for polymerized actin and microtubules as well as synapsin I and growth-associated protein 43. Inhibition of the Wnt receptor, Frizzled3 (Fzd3), with antiserum or by short interfering RNA (siRNA) markedly reduced n...

متن کامل

Pavarotti/MKLP1 Regulates Microtubule Sliding and Neurite Outgrowth in Drosophila Neurons

Recently, we demonstrated that kinesin-1 can slide microtubules against each other, providing the mechanical force required for initial neurite extension in Drosophila neurons. This sliding is only observed in young neurons actively forming neurites and is dramatically downregulated in older neurons. The downregulation is not caused by the global shutdown of kinesin-1, as the ability of kinesin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2014